Simple symmetric functions
Sym = symmetrisation
Monomial
- mλ(x)=Sym(xλ11...xλℓℓ)
Elementary
- eλ=∏i=1:ℓeλi
where
- en(x)=Sym(x1...xn)
Generating function:
E(t,x)=∏1≥1(1+txi)Complete homogenous
- hλ=∏i=1:ℓhλi
where
- hn(x)=∑n1+...+nk=nxn
generating function:
H(t,x)=∑n≥0tnhn(x)=∏i≥111−txi.Relation between e and h
- H(t)E(−t)=1
- so ∑r=0:n(−1)rhn−rer=0, i.e. en=h1en−1−h2en−2+....
- The above relation shows that homomorphism ω defined by ω(en)=hn is an involution.
- s(n)=hn and s(n)′=en.
Forgotten
Define fλ:=ω(mλ), called the forgotten symmetric functions.
[{macdonald98}]: no simple direct description.
Power sum
- pλ=∏i=1:ℓpλi
where
- pn(x)=Sym(xn1)
Dirichlet generating function ([{sagan00}]):
∑n≥1pn(x)tnn=log∏i≥111−xit=logH(t,x).Generating function ([{macdonald98}]):
P(t)=∑r≥1prtr−1=H′(t)/H(t).P(−t)=E′(t)/E(t)so
nhn=∑r=1:nprhn−rnen=∑r=1:n(−1)r−1pren−rThe second one above is Newton's formula.
So
ω(pn)=(−1)n−1pn,ω(pλ)=(−1)|λ|−l(λ)pλ=:ϵλpλ.References
- [macdonald98] Symmetric Functions and Hall Polynomials, , 1998.
- [sagan00] The Symmetric Group, , 2000.