Processing math: 100%

Simple symmetric functions


Sym = symmetrisation

Monomial

Elementary

where

Generating function:

E(t,x)=11(1+txi)

Complete homogenous

where

generating function:

H(t,x)=n0tnhn(x)=i111txi.

Relation between e and h

Forgotten

Define fλ:=ω(mλ), called the forgotten symmetric functions.

[{macdonald98}]: no simple direct description.

Power sum

where

Dirichlet generating function ([{sagan00}]):

n1pn(x)tnn=logi111xit=logH(t,x).

Generating function ([{macdonald98}]):

P(t)=r1prtr1=H(t)/H(t).P(t)=E(t)/E(t)

so

nhn=r=1:nprhnrnen=r=1:n(1)r1prenr

The second one above is Newton's formula.

So

ω(pn)=(1)n1pn,ω(pλ)=(1)|λ|l(λ)pλ=:ϵλpλ.

References