Simple symmetric functions


Sym = symmetrisation

Monomial

Elementary

where

Generating function:

\[ E(t, x) = \prod_{1 \ge 1} (1 + t x_i) \]

Complete homogenous

where

generating function:

\[ H(t, x) = \sum_{n \ge 0} t^n h_n(x) = \prod_{i \ge 1}{1 \over 1 - t x_i}. \]

Relation between \(e\) and \(h\)

Forgotten

Define \(f_\lambda := \omega(m_\lambda)\), called the forgotten symmetric functions.

[{macdonald98}]: no simple direct description.

Power sum

where

Dirichlet generating function ([{sagan00}]):

\[ \sum_{n \ge 1} p_n(x) {t^n \over n} = \log \prod_{i \ge 1} {1 \over 1 - x_i t} = \log H(t, x). \]

Generating function ([{macdonald98}]):

\begin{align} P(t) = \sum_{r \ge 1} p_r t^{r - 1} = H'(t) / H(t). P(-t) = E'(t) / E(t) \end{align}

so

\begin{align} n h_n = \sum_{r = 1 : n} p_r h_{n - r}\\ n e_n = \sum_{r = 1 : n} (-1)^{r - 1} p_r e_{n - r} \end{align}

The second one above is Newton's formula.

So

\[ \omega(p_n) = (-1)^{n - 1} p_n, \qquad \omega(p_\lambda) = (-1)^{|\lambda| - l(\lambda)} p_\lambda =: \epsilon_\lambda p_\lambda. \]

References