Simple symmetric functions
Sym = symmetrisation
Monomial
- \(m_\lambda(x) = Sym(x_1^{\lambda_1} ... x_\ell^{\lambda_\ell})\)
Elementary
- \(e_\lambda = \prod_{i = 1 : \ell} e_{\lambda_i}\)
where
- \(e_n(x) = Sym(x_1...x_n)\)
Generating function:
\[ E(t, x) = \prod_{1 \ge 1} (1 + t x_i) \]Complete homogenous
- \(h_\lambda = \prod_{i = 1 : \ell} h_{\lambda_i}\)
where
- \(h_n(x) = \sum_{n_1 + ... + n_k = n} x^n\)
generating function:
\[ H(t, x) = \sum_{n \ge 0} t^n h_n(x) = \prod_{i \ge 1}{1 \over 1 - t x_i}. \]Relation between \(e\) and \(h\)
- \(H(t) E(-t) = 1\)
- so \(\sum_{r = 0 : n} (-1)^r h_{n - r} e_r = 0\), i.e. \(e_n = h_1 e_{n - 1} - h_2 e_{n - 2} + ...\).
- The above relation shows that homomorphism \(\omega\) defined by \(\omega (e_n) = h_n\) is an involution.
- \(s_{(n)} = h_n\) and \(s_{(n)'} = e_n\).
Forgotten
Define \(f_\lambda := \omega(m_\lambda)\), called the forgotten symmetric functions.
[{macdonald98}]: no simple direct description.
Power sum
- \(p_\lambda = \prod_{i = 1 : \ell} p_{\lambda_i}\)
where
- \(p_n(x) = Sym(x_1^n)\)
Dirichlet generating function ([{sagan00}]):
\[ \sum_{n \ge 1} p_n(x) {t^n \over n} = \log \prod_{i \ge 1} {1 \over 1 - x_i t} = \log H(t, x). \]Generating function ([{macdonald98}]):
\begin{align} P(t) = \sum_{r \ge 1} p_r t^{r - 1} = H'(t) / H(t). P(-t) = E'(t) / E(t) \end{align}so
\begin{align} n h_n = \sum_{r = 1 : n} p_r h_{n - r}\\ n e_n = \sum_{r = 1 : n} (-1)^{r - 1} p_r e_{n - r} \end{align}The second one above is Newton's formula.
So
\[ \omega(p_n) = (-1)^{n - 1} p_n, \qquad \omega(p_\lambda) = (-1)^{|\lambda| - l(\lambda)} p_\lambda =: \epsilon_\lambda p_\lambda. \]References
- [macdonald98] Symmetric Functions and Hall Polynomials, , 1998.
- [sagan00] The Symmetric Group, , 2000.