Hypergeometric distributions


hypergeometric_distribution

Definition

\(X \sim Hyp(m_1, m_2, k)\) if

\[ f_X(\ell) = {{m_1 \choose \ell} {m_2 \choose k - \ell} \over {m_1 + m_2 \choose k}} \]

The support is

\[ 0 \vee (k - m_2) \le \ell \le m_1 \wedge k \]

The corresponding orthogonal polynomial is the Hahn polynomial (see e.g. (2.4.9) of [{nikiforov-suslov-uvarov91}]).

q-analog

A \(q\)-deformation is: \(X \sim qHyp(m_1, m_2, k)\) if

\[ f_X(\ell) = q^{(m_1 - \ell)(k - \ell)}{{m_1 \choose \ell}_q {m_2 \choose k - \ell}_q \over {m_1 + m_2 \choose k}_q} \]

See (6) of q_pochhammers for a proof that it is a probability distribution.

properties:

References